Sequential and regioselective F riedel-C rafts reactions of gemdihalogenocyclopropanecarbonyl chlorides with benzenes for the synthesis of 4-aryl-1-naphthol derivatives

Yoshinori N ishii and Yoo Tanabe*
School of Science, K wansei Gakuin U niversity, 1-1-155 U egahara, N ishinomiya, H yogo 662, J apan

Abstract

N ovel, sequential and regioselective F riedel-C rafts type reactions of (E)-3-aryl-2,2-dihalogenocyclopropanecarbonyl chlorides 1 and 2,2-dichlorocyclopropanecarbonyl chlorides 3 with benzenes produce various 4-aryl-3-halogeno-1-naphthols 2 and 4-aryl-1-naphthols 4, respectively. One of the benzannulations involves the intramolecular cyclization of acid chlorides 1, followed by intermolecular coupling with substituted benzenes to give 4-aryl-3-halogeno-1-naphthols 2 . A s a demonstration of this annulation, 4-aryl-3-bromo-1-naphthols 2 i and 2 k are successfully converted into new analogues of 1-aryl-3-hydroxymethyl-4-methoxy-2-naphthoic acid lactones 13, a class of lignan lactones. The other benzannulation involves three series of reactions using acid chlorides $3 \mathrm{a}-\mathrm{c}$: (1) the intermolecular F riedel-C rafts acylation of 3 with one benzene molecule giving the intermediary 2,2-dichlorocyclopropyl(phenyl)methanones 14a-c; (2) the intermolecular trapping of 14a-c with another benzene molecule accompanied by regioselective ring opening; and (3) the final intramolecular cyclization giving 4-phenyl-1-naphthols 4a-c. The use of p-xylene also gives the corresponding 4-(p-xylyl)-1-naphthol 4d. The reactions of alternatively prepared ketones 14 with benzenes gives a variety of ‘unsymmetrically’ substituted 4-aryl-1naphthols $4 \mathrm{c}, \mathrm{e}-\mathrm{k}$ under identical conditions. H owever, the reaction using p-methoxyphenyl ketone analogues 14 g does not produce 4-aryl-1-naphthols, but gives 5-aryl-2-(p-methoxyphenyl)-3-methylfurans 16. These annulations proceed straightforwardly (in a one-pot manner) and this variation is due to the highly regioselective cyclopropane ring-openings.

The characteristic features of cyclopropa(e)nes has brought about a number of both unique and useful synthetic reactions. ${ }^{\text {1a-c }}$ This synthetic methodology has been continuously developed over the past two or three decades. The potentiality of these methods is largely ascribed to the nature of cyclopropa(e)nes, i.e. relief of the inherent ring strain providing a variety of thermal, oxidative and reductive, and electrophilic and nucleophilic ring-opening reactions. Cyclopropa(e)ne ring expansions (annulation accompanying ring reconstructions) occupy a significant position in worthwhile synthetic methods. ${ }^{1}$ A mong them, benzannulation (construction of aromatic rings) utilizing cyclopropene intermediates has recently attracted attention in organic reactions, ${ }^{2}$ wherein several naphthol analogues were produced by the reaction of carbene-metal complexes with cyclopropenes through rearrangement. A nother notable benzannulation utilizing cyclobutene derivatives is also documented. ${ }^{3}$ These benzannulations are considered to be worthwhile synthetic methods in view of both their unique reaction mode and practicality in providing a variety of substituted aromatics.

Our attention has been focused on the chemistry of gemdihalogenocyclopropane derivatives, because they possess the following noteworthy features: (a) ease of preparation by the addition of dihalogenocarbenes to olefins; ${ }^{4}$ (b) as the only precursor for halogenocyclopropanes when subjected to reductive dehalogenation using tributyltin hydride, metal hydrides and other reagents; ${ }^{5}$ (c) useful intermediates for N azarov-type cyclopentannulation; ${ }^{6}$ (d) synthons of choice for cyclopropane derivatives by inter- and intra-molecular stereocontrolled C-C bond formation through both anionic ${ }^{7}$ and radical type methods; ${ }^{8}$ (e) other useful transformations; ${ }^{9}$ and (f) constituents of useful biologically active compounds. ${ }^{10} \mathrm{~A} s$ part of our ongoing program for new and useful reactions and compounds utilizing gem-dihalogenocyclopropanes, ${ }^{8,11}$ we have previously reported a novel benzannulation using aryl(gem-dihalogeno-
cyclopropyl)methanols with acid catalysts for the synthesis of α - and β-halogenonaphthalenes, wherein two distinct types of highly regioselective acid-induced cyclopropane ring cleavages are involved. ${ }^{11, \mathrm{~d}}$ These results prompted us to extend the more straightforward benzannulation aiming at the synthesis of the 4-aryl-1-naphthols.
This paper describes full details of the two types of novel, sequential and regioselective Friedel-Crafts ($\mathrm{F}-\mathrm{C}$) type benzannulations of gem-dihalogenocyclopropanecarbonyl chlorides $\mathbf{1}$ and $\mathbf{3}$ producing various 4 -aryl-1-naphthols $\mathbf{2}$ and $\mathbf{4}$, respectively (Scheme 1). ${ }^{11 \mathrm{~b}}$ Since 4-arylnaphthalene derivatives are

attracting much attention as the basic skeleton of several biologically active lignan-type natural products and pharmaceuticals, ${ }^{12}$ these compounds and their isosteres have been one
synthetic target of significance. ${ }^{13}$ Taking this background into account, we evaluated the application of 4-aryl-1-naphthols to the synthesis of new types of lignan lactones.

Results and discussion

One of the sequential $\mathrm{F}-\mathrm{C}$ reactions involved the intramolecular cyclization of (E)-3-aryl-2,2-dihalogenocyclopropanecarbonyl chlorides $\mathbf{1}$, followed by intermolecular coupling with substituted benzenes to give 4-aryl-3-halogeno-1naphthols 2. Initially, we allowed (E)-2,2-dichloro-1-methyl-3phenylcyclopropanecarbonyl chloride (E)-1a to react with benzene in the presence of an acid such as $\mathrm{AICl}_{3}, \mathrm{Et}_{2} \mathrm{AICI}, \mathrm{TiCl}_{4}$, $\mathrm{SnCl}_{4}, \mathrm{ZnCl}_{2}, \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ or $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$. A fter optimizing the conditions, the use of 1.1 equiv. of benzene and 2.2 equiv. of AlCl_{3} at room temperature gave 3-chloro-2-methyl-4-phenyl-1naphthol 2a in 52% yield [Scheme 2, eqn. (1)]. To clarify this

(6)

Scheme 2 Reagents and conditions: i, benzene (1.2 equiv.), $\mathrm{AlCl}_{\mathbf{3}}$ (2.2 equiv.), 1,2-dichloroethane, room temp.; ii, [${ }^{2} \mathrm{H}_{6}$]benzene (1.2 equiv.), AlCl_{3} (2.2 equiv.), 1,2-dichloroethane, room temp.; iii, AlCl_{3} (2.2 equiv.), 1.2-dichloroethane, room temp.
reaction mechanism, we carried out the following five experiments [eqns. (2)-(6)]. (1) An identical reaction of (E)-la using $\mathrm{C}_{6} \mathrm{D}_{6}$ in place of benzene gave the $4-\mathrm{C}_{6} \mathrm{D}_{5}$-substituted naphthol 2 b [eqn. (2)]. (2) $\mathrm{TheC}_{6} \mathrm{D}_{5}$-substituted ketone $\mathbf{5}$, which was
prepared by an alternative method and is the postulated intermediate in the case where the intermolecular F-C acylation initially occurred, mainly afforded an isomeric naphthol 6 under identical conditions [eqn. (3)]. (3) The controlled reaction of (E)-1a without benzene gave the tricyclic ketone 7 and 3,4-dichloro-1-naphthol 8 as major products [eqn. (4)]. (4) The controlled reaction of (Z)-la with or without benzene, on the other hand, gave the tricyclic ketone $\mathbf{7}$ as a major product in good yield [eqn. (5)]. (5) Treatment of $\mathbf{7}$ with or without benzene under identical conditions resulted only in the recovery of 7.
These results clearly indicate that during this sequential $\mathrm{F}-\mathrm{C}$ reaction, intramolecular cyclization of the key ketene intermediate 9 precedes the intermolecular coupling with benzene (Scheme 3). The heavy lines in these structures indicate the backbones of the starting 2,2-dichloro-3-phenylcyclopropane moiety. Three important points should be noted: (1) bond-a cleavage proceeded with high regioselectivity to result in the selective synthesis of 2 a ; ${ }^{11 a, d}$ (2) even 1.2 equiv. of benzene was sufficient for it to play its role as the intermolecular trapping agent; and (3) the E-configuration of acyl chloride la was critical for this successful benzannulation. We have recently reported a new furan synthesis using 1 a and 5 equiv. of reactive benzenes such as toluene or anisole. ${ }^{11 c} \mathrm{~A}$ ccordingly, the reaction pathway involving 1 forks into two alternative branches, i.e., 4-aryl-1-naphthol formation and diarylfuran formation, depending on the relative molar amounts of the benzenes used.
Table 1 lists the results of the synthesis of various 4 -aryl-3-halogeno-1-naphthols 2 (M ethod A). As for the parasubstituent (R^{2}) in 1, the M e O group led to a decreased product yield compared with the H or Cl . Whilst the use of toluene, chloro- bromo-benzenes as reactants gave the corresponding regioisomeric mixtures of 4-aryl-3-halogeno-1-naphthols 2, 2,6dichlorotoluene and 1,4-dichlorobenzene gave the corresponding single products $\mathbf{2 f}, \mathbf{g}, \mathbf{k}, \mathbf{m}$ and $\mathbf{0}$.
The structures of the naphthols $\mathbf{2 a}$ and $\mathbf{2 f}$ were unambiguously determined by ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectroscopy, ${ }^{14} \mathrm{H}-\mathrm{H}$ and C-H COSY results, a DEPT spectrum and elemental analysis. The N OESY spectra of $\mathbf{2 a}, \mathbf{2 b}$ and $\mathbf{2 f}$ [interaction between the $\mathrm{OH}(5.32 \mathrm{ppm})$ and the $\mathrm{Me}(2.51-2.53 \mathrm{ppm})$], and that of 2 f [interaction between $\mathrm{OH}(5.32 \mathrm{ppm})$ and $8-\mathrm{H}(8.35 \mathrm{ppm})$] also supported the assignment of a 4-aryl-2-naphthol skeleton to the compounds (see Fig. 1).

M urphy and Wattanasin reported the Lewis acid-promoted annulation of 2-arylcyclopropyl aryl ketones 10, which were prepared by cyclopropanation of chalcones for the synthesis of tetralones. ${ }^{15}$ The modes of both this ring-expansion using 10 and the benzannulation using aryl(2,2-dihalogeno-3-phenylcyclopropyl)methanols $11^{112, d}$ are quite different from that of the present reaction, because those two methods involve the intramolecular $\mathrm{F}-\mathrm{C}$ alkylation of the 3-position on the cyclopropane ring and no $\mathrm{F}-\mathrm{C}$ intermolecular coupling (Scheme 4).
We next evaluated the utility of the 4-aryl-3-halogeno-1naphthols 2. Following our work utilizing 2 , we used the bromonaphthols $\mathbf{2 i}$ and $\mathbf{2 k}$ to prepare the two lignan lactones 13a and 13b, respectively (Scheme5). Lithiation at the bromine position in $\mathbf{2 i}$ and $\mathbf{2 k}$, followed by trapping with CO_{2}, gave the corresponding carboxylic acids, which were converted into the esters 12a and 12b by double methylation of the hydroxy and the carboxy groups with an excess of M el . The desired lignans 13a and 13b were obtained by bromination of the vicinal methyl groups, followed by treatment with 1 m aqueous NaOH and acidic work-up. This sequence made good use of the bromine in the naphthalene for effective derivatization, compared with our earlier method for synthesizing natural lignan lactones utilizing the α-chloronaphthane intermediate, ${ }^{11 a, d}$ wherein an extra dechlorination step was required.
The other sequential $\mathrm{F}-\mathrm{C}$ reaction for benzannulation using 2,2-dichlorocyclopropanecarbonyl chlorides 3 involved the following reaction series: (1) the intermolecular F-C acylation

Table 1 Sequential Friedel-Crafts reaction of acyl chlorides $\mathbf{1}$ with benzenes (M ethod A)

Substrate	X	R^{1}	R^{2}	Y -Benzene	Product		Y ield (\%)
1a	Cl	M e	H	Benzene	2a		52
				$\left[{ }^{2} \mathrm{H}_{6}\right]$ Benzene	2b		50
				Toluene	2c	4-M e	$56^{\text {a }}$
				Chlorobenzene	2d	4-Cl	$81^{\text {b }}$
				Bromobenzene	2 e	$4-\mathrm{Br}$	$64^{\text {c }}$
				2,6-D ichlorotoluene	$2 f$	2,4-Cl $2,3-\mathrm{Me}$	$60^{\text {d }}$
				1,4-D ichlorobenzene	2 g	$2-\mathrm{Cl}, 5-\mathrm{Cl}$	47
1b	Cl		H	Chlorobenzene	2h	$4-\mathrm{Cl}$	$51^{\text {e }}$
1c	Br	Me	H	Benzene	2 i		47
				Chlorobenzene	2j	$4-\mathrm{Cl}$	72^{f}
				1,4-D ichlorobenzene	2k	$2-\mathrm{Cl}, 5-\mathrm{Cl}$	48
1d	Cl	M e	Cl	Benzene	21		48
				2,6-D ichlorotoluene	2m	2,4- $\mathrm{Cl}_{2}, 3-\mathrm{Me}$	$44^{\text {d }}$
12	Cl	Me	OMe				
				2,6-D ichlorotoluene	20	$2,4-\mathrm{Cl}_{3}, 3-\mathrm{Me}$	$44^{\text {d }}$

${ }^{\text {a }}$ Containing ca. 10% of 2-M e or 3-M e isomer. ${ }^{\text {b }}$ Containing ca. 35% of $2-\mathrm{Cl}$ isomer. ${ }^{\mathrm{c}}$ Containing ca. 20% of 2-Br isomer. ${ }^{\text {d }}$ Exclusively single isomer.
${ }^{\mathrm{e}}$ C ontaining ca. 30% of $2-\mathrm{Cl}$ isomer. ${ }^{\mathrm{f}}$ C ontaining ca. 40% of $2-\mathrm{Cl}$ isomer.

Scheme 3
of 2,2-dichlorocyclopropanecarbonyl chlorides 3a-c with one benzene molecule to give the ketones $14 \mathrm{a}-\mathbf{c}$; (2) the intermolecular trapping of 14a-c with another benzene molecule accompanied by cyclopropane ring-opening; and (3) the final intramolecular cyclization to give 4-aryl-1-naphthols 4a-c (Scheme 6). It is also noteworthy that these reactions spontaneously took place in a one pot manner with regioselective bond-b cleavage to give a selective synthesis of 4 (Table 2, M ethod B). A ccordingly, the regioselective ring-cleavage position of \mathbf{a} or \mathbf{b} depends on the difference in substituents (3-position) on the cyclopropane ring. When p-xylene was used as the solvent, the desired reaction also proceeded to give 4d. H owever, the reactions using monosubstituted benzenes such as toluene and p-methoxybenzene proved to very sluggish.

To confirm this reaction mechanism, we examined the benz-
annulation using the intermediary ketones 14c-f which were prepared in an alternative way by the coupling of $\mathrm{ArMgBr}(1.0$ equiv.) with the acyl chlorides 3 in 52-61\% yields. A s expected, these ketones gave the corresponding 4 -aryl-1-naphthols $4 c, e$ \mathbf{k} under identical conditions. This improved method provided access to a variety of compounds 4 bearing 'unsymmetrical' substituents, by using variously substituted benzenes which could be incorporated stepwise (Table 3, M ethod C). A representative structure, that of 4-phenyl-1-naphthol 4c, was also unambiguously determined (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C} N \mathrm{M}, \mathrm{H}-\mathrm{H}$ and $\mathrm{C}-\mathrm{H}$ COSY s, and NOESY spectral evidence).
Finally, we describe a new furan synthesis using 2,2-di-chloro-1-methylcyclopropyl(p -methoxyphenyl)methanone 14 g (Scheme 7). Treatment of the p-methoxyphenyl substituted ketone $\mathbf{1 4 g}$ with benzene, toluene and chlorobenzene, respec-

2a $Y=H_{5}$ 2b $Y=D$

$2 f$
Fig. 1

Scheme 4
tively, in the presence of AlCl_{3}, gave the corresponding 5-aryl-2(p-methoxyphenyl)-3-methylfurans 16 in moderate yields; none of the expected 4-aryl-1-naphthols were produced. This unexpected result may be explained as follows; the pmethoxyphenyl group participates in stabilizing the intermediary benzyl cation 15 to such a degree that during the cyclopropane ring-opening, attack by the carbonyl oxygen at the 2position of the cyclopropane ring occurs. This is followed by intermolecular trapping with benzenes as is described for the aforementioned benzannulations. Such a speculative mechanism could explain the reported furan formation when (E)-3-aryl-2,2-dihalogenocyclopropanecarbonyl chlorides (E)-1 reacts with anisole (p-methoxybenzene). ${ }^{\text {11c }}$
gem-D ihalogenocyclopropanecarbonyl chlorides 1 and 3 used as substrates throughout this study were readily prepared by a reported procedure (Scheme 8).

In conclusion, we have investigated two distinct types of sequential $\mathrm{F}-\mathrm{C}$ reactions for new benzannulations using gemdihalogenocyclopropanecarbonyl chlorides, in which various types of 4-aryl-1-naphthols were prepared. These reactions proceed in a more straightforward, one-pot manner, than the related annulations and via significantly different mechanisms. The variation in these annulations is unequivocally due to the high degree of site-selectivity in the ring-openings (bonds-a and -b); this behaviour is characteristic of gem-dihalogeno-

Table 2 Sequential Friedel-Crafts reactions of acyl chlorides $\mathbf{3}$ with benzene or p-xylene (M ethod B)

Substrate	$R^{\mathbf{1}}$	$R^{\mathbf{3}}$	Y -Benzene	Product	Y ield (\%)
3a	H	H	Benzene	4a	38
3b	Me	Me	Benzene	4b	40
3c	Me	H	Benzene	4c	$58^{\text {a }}$
3c	M e	H	p-X ylene	4d	44

a 3.0 Equiv. of AlCl_{3} were used.

13a $Y^{1}=H$
13b $\mathrm{Y}^{1}=\mathrm{Cl}$
Scheme 5 Reagents and conditions: i, Bu'Li (2.5 equiv.), THF, $-60^{\circ} \mathrm{C}$; ii, CO_{2}; iii, $\mathrm{K}_{2} \mathrm{CO}_{3}$ (2.4 equiv.), M el (2.4 equiv.), D M F, room temp.; iv, NBS (1.1 equiv.), cat. AIBN, CCl_{4}, reflux; v, 10% aq. NaOH -dioxane, $70^{\circ} \mathrm{C}$; vi, 4 м aq. HCl , room temp.
cyclopropanes. Further work on the use of gem-dihalogeno- or halogeno-cyclopropanes for new types of benzannulations is now underway.

Experimental

M elting points were determined on a hot-stage microscope apparatus (Yanagimoto) and are uncorrected. ${ }^{1} \mathrm{H}$ N M R Spectra were recorded on a JEOL EX-90 (90 M Hz) and/or JEOL α (400 M Hz) spectrometer in CDCl_{3} using TM S as internal standard. ${ }^{13} \mathrm{C}$ N M R Spectra were recorded on a JEOL $\alpha(100 \mathrm{M} \mathrm{Hz}$) spectrometer in CDCl_{3} using TM S as internal standard. IR Spectra were recorded on a JASCO FT/IR-8000 spectrophotometer. M ass spectra and H R M S were recorded on JM S-A utoM ass 50 KTR-3 and JM S-A X505H machines, respectively. Silica gel column chromatography was performed on a M erck Art. 7734 and/or 9385.
(1R *,3S*)-2,2-D ichloro-1-methyl-3-phenylcyclopropanecarbonyl chloride (E)-1a, (1R*,3S*)-2,2-dichloro-3-phenyl-

Table 3 Stepwise F riedel-C rafts reaction of the ketones 14 with benzenes (M ethod C)

K etone	Y	Z-Benzene	Product		Y ield (\%)
14c	H	Benzene	4c		38
14c		2,6-D ichlorotoluene	4 e	2,4-CI2, 3-M e	$48^{\text {a }}$
14d	4-CI	Benzene	4 f		52
14d		2,6-D ichlorotoluene	4 g	2,4-Cl $2,3-\mathrm{Me}$	$23^{\text {a }}$
14e	4-M e	Benzene	4h		32
14 e		2,6-D ichlorotoluene	4i	2,4-Cl $2,3-\mathrm{Me}$	$23^{\text {a }}$
14 f	3-M e	Benzene	4j		$55^{\text {b }}$
14 f		2,6-D ichlorotoluene	4k	$2,4-\mathrm{Cl}_{2}, 3-\mathrm{Me}$	$43^{\text {a,b }}$

${ }^{\text {a }}$ Exclusively single isomer. ${ }^{\text {b }}$ Exclusively 7-methyl isomer.

Scheme 6

cyclopropanecarbonyl chloride $\mathbf{1 b}$ and (1R*,3S*)-2,2-dibromo-1-methyl-3-phenylcyclopropanecarbonyl chloride 1c were prepared from the alcohols 17a, 17b and 17c, respectively, by the reported method. ${ }^{11 \mathrm{c}}$

(1R*,3R*)-2,2-D ichloro-1-methyl-3-phenylcyclopropanecarbonyl chloride (Z)-1a

Jones reagent ($5 \mathrm{~cm}^{3}$) was added to a stirred solution of ($1 \mathrm{R} *$, $3 R^{*}$)-2,2-dichloro-1-methyl-3-phenylcyclopropylmethanol ${ }^{\text {11f }}$
($1.20 \mathrm{~g}, 5.0 \mathrm{mmol}$) in acetone ($10 \mathrm{~cm}^{3}$) at $0-5^{\circ} \mathrm{C}$, and the mixture was stirred at room temp. for 24 h . A cetone was evaporated from the mixture and water was added to the residue. The mixture was then extracted with ethyl acetate ($20 \mathrm{~cm}^{3} \times 2$) and the combined extracts were washed with water and brine, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated to give ($1 \mathrm{R} *, 3 \mathrm{R} *$)-2,2-dichloro-1-methyl-3-phenylcyclopropanecarboxylic acid ($1.20 \mathrm{~g}, 98 \%$) as
colourless crystals, mp $142-144{ }^{\circ} \mathrm{C}$ (Found: C, 54.0; H, 4.0. $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}_{2}$ requires $\left.\mathrm{C}, 53.90 ; \mathrm{H}, 4.11 \%\right)$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3600-$ 2400,1714 and $1249 ; \delta_{\mathrm{H}}(90 \mathrm{M} \mathrm{Hz}) 1.83(3 \mathrm{H}, \mathrm{s}), 2.90(1 \mathrm{H}, \mathrm{s})$ and 7.30-7.60 ($5 \mathrm{H}, \mathrm{m}$). A mixture of the carboxylic acid ($1.08 \mathrm{~g}, 4.4$ mmol), thionyl chloride ($0.63 \mathrm{~g}, 5.3 \mathrm{mmol}$) and a drop of DM F in benzene ($10 \mathrm{~cm}^{3}$) was refluxed for 16 h . The mixture was then concentrated under reduced pressure and distilled by bulb-tobulb distillation [bp $130-145{ }^{\circ} \mathrm{C}$ (oven temp.)/ 0.2 mmHg] to give the title product (Z)-1a ($1.16 \mathrm{~g}, 95 \%$) as colourless crystals, $\mathrm{mp} 82^{\circ} \mathrm{C}$ (decomp.); $\delta_{\mathrm{H}}(90 \mathrm{M} \mathrm{Hz}) 2.01(3 \mathrm{H}, \mathrm{s}), 3.05(1 \mathrm{H}, \mathrm{s})$ and 7.25-7.65 ($5 \mathrm{H}, \mathrm{m}$); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1}$ 2984, 1807 and 1448.

(1R*,3S*)-3-(4-C hlorophenyl)-2,2-dichloro-1-methylcyclopropanecarbonyl chloride 1d

Following the procedure for preparing the acid chloride (Z)1a described above, using the alcohol 17d, (1R*,3S*)-3-(4-chlorophenyl)-2,2-dichloro-1-methylcyclopropanecarboxylic acid (87%) was obtained as colourless crystals, $\mathrm{mp} 153-154^{\circ} \mathrm{C}$ (Found: C, 47.0; $\mathrm{H}, 3.1 . \mathrm{C}_{11} \mathrm{H}_{9} \mathrm{Cl}_{3} \mathrm{O}_{2}$ requires $\mathrm{C}, 47.26 ; \mathrm{H}$, $3.25 \%)$; $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 1.42(3 \mathrm{H}, \mathrm{s}), 3.59(1 \mathrm{H}, \mathrm{s}), 7.22(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 8.1) and 7.36 ($2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.1$); $\delta_{\mathrm{c}} 14.4,39.1,39.2,65.6,128.8$, 129.8, 131.4, 133.9 and 174.9; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 2993,2880,1705$ and 1300. The acid was converted into the product 1d (76\%) by bulb-to-bulb distillation [bp $180-185^{\circ} \mathrm{C}$ (oven temp.)/0.2 mmH g] as colourless crystals, mp $63-66{ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}), 1.52$ ($3 \mathrm{H}, \mathrm{s}$), $3.58(1 \mathrm{H}, \mathrm{s}), 7.20(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.3$) and $7.36(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 7.3); $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 2999,1772$ and 1493.

(1R*,3S*)-2,2-D ichloro-3-(4-methoxyphenyl)-1-methyIcyclopropanecarbonyl chloride le

Following the procedure for preparing the acid chloride (Z)-1a described above, using the alcohol 17e, (1 R*,3S*)-2,2-dichloro-3-(4-methoxyphenyl)-1-methylcyclopropanecarboxylic acid (98\%) was obtained as colourless crystals, mp $151-152^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 52.0 ; \mathrm{H}, 4.1 . \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{3}$ requires $\mathrm{C}, 52.39 ; \mathrm{H}$, 4.40%); $\delta_{\mathrm{H}}(90 \mathrm{M} \mathrm{Hz}) 1.42(3 \mathrm{H}, \mathrm{s}), 3.58(1 \mathrm{H}, \mathrm{s}), 3.81(3 \mathrm{H}, \mathrm{s})$, $6.90(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7), 7.21(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.7)$ and 8.50-9.70(1 H, br, $\mathrm{OH}) ; v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3459,1705$ and 1514. The acid was converted into the product $\mathbf{1 e}(60 \%)$ by bulb-to-bulb distillation [bp $170-175^{\circ} \mathrm{C}$ (oven temp.)/ 0.2 mmH g] as purple crystals, mp 68 $73{ }^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}(90 \mathrm{M} \mathrm{Hz}) 1.55(3 \mathrm{H}, \mathrm{s}), 3.59(1 \mathrm{H}, \mathrm{s}), 3.82(3 \mathrm{H}, \mathrm{s}), 6.91$ $(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6)$ and $7.20(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6) ; v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1780$, 1514 and 1250.

3-C hloro-2-methyl-4-phenyl-1-naphthol 2a [eqn. (1)]
M ethod A: typical procedure. AlCl_{3} ($147 \mathrm{mg}, 1.1 \mathrm{mmol}$) was

Scheme 7

Scheme 8 Reagents: i, 3,4-dihydro-2H -pyran; ii, $\mathrm{CHX}_{3}, 50 \%$ aq. NaOH ; iii, H^{+}; iv, Jones oxidation; v, SOCl_{2}, cat. D M F
added portion-by-portion to a stirred solution of cyclopropanecarbonyl chloride (E)-1a ($132 \mathrm{mg}, 0.50 \mathrm{mmol}$) and benzene ($47 \mathrm{mg}, 0.60 \mathrm{mmol}$) in 1,2-dichloroethane ($2.5 \mathrm{~cm}^{3}$) at $0-5^{\circ} \mathrm{C}$, and the mixture was stirred at room temp. for 10 h .1 m A queous HCl solution (ca. $5 \mathrm{~cm}^{3}$) and diethyl ether (ca. $5 \mathrm{~cm}^{3}$) were added to the cooled mixture, which was then stirred at room temp. for several min. The separated organic phase was washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give a crude oil. This was purified by silica gel column chromatography (hexane-diethyl ether, 8:1) to give the product $\mathbf{2 a}$ (70 $\mathrm{mg}, 52 \%$) as colourless crystals, $\mathrm{mp} 85-88^{\circ} \mathrm{C}$ (Found: C, 75.6 ; $\mathrm{H}, 4.5 . \mathrm{C}_{17} \mathrm{H}_{13} \mathrm{ClO}$ requires $\left.\mathrm{C}, 75.98 ; \mathrm{H}, 4.88 \%\right)$; $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}$) $2.52(3 \mathrm{H}, \mathrm{s}), 5.32(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 7.22-7.38(4 \mathrm{H}, \mathrm{m}), 7.40-7.55$ ($4 \mathrm{H}, \mathrm{m}$) and $8.14(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.4)$; $\delta_{\mathrm{c}} 13.5,115.6,121.0,122.9$, 125.1, 125.3, 126.7, 127.4, 127.9, 128.3, 128.6, 130.7, 130.9, 132.3, 133.5, 138.6 and $148.8 ; v_{\max }\left(\mathrm{K} \mathrm{Br}^{2} / \mathrm{cm}^{-1} 3532,3484,1576\right.$, 1520 and 1506. M olar amounts of AlCl_{3} were optimized as follows: 1.1 equiv. [vs. (E)-1a, 43\%; 3.3 equiv.; 52%]. U inder the identical conditions $\mathrm{Et}_{2} \mathrm{AlCl}^{2} \mathrm{SnCl}_{4}, \mathrm{ZnCl}_{2}, \mathrm{BF}_{3} \cdot \mathrm{OEt}$ or $\mathrm{CF}_{3}{ }^{-}$ $\mathrm{CO}_{2} \mathrm{H}$ failed to react. The reaction with TiCl_{4} was very sluggish.

3-C hloro-2-methyl-4-(pentadeuteriophenyl)-1-naphthol 2b

[eqn. (2)]

Following the procedure of M ethod A described above, with $\left[{ }^{2} \mathrm{H}_{6}\right]$ benzene in place of benzene, the product $\mathbf{2 b}(50 \%)$ was obtained as colourless crystals, $\mathrm{mp} 85-88^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 2.51$ $(3 \mathrm{H}, \mathrm{s}), 5.32(1 \mathrm{H}, \mathrm{br}$ s, OH$), 7.24-7.54(3 \mathrm{H}, \mathrm{m})$ and $8.12(1 \mathrm{H}$, d, J 7.4); $v_{\text {max }}(\mathrm{Nujol}) / \mathrm{cm}^{-1} 3532,3492,1578$ and 1502.
(1R*,3R*)-2,2-D ichloro-1-methyl-3-phenylcyclopropyl(pentadeuteriophenyl)methanone 5. A ccording to the reported procedure ${ }^{1 \mathrm{lc}}$ using $\mathrm{C}_{6} \mathrm{D}_{5} \mathrm{M} \mathrm{gBr}$ in place of PhM gBr , the product 5 (65%) was obtained as colourless oil; $\delta_{\mathrm{H}}(90 \mathrm{M} \mathrm{Hz}) 1.44(3 \mathrm{H}, \mathrm{s})$, $3.58(1 \mathrm{H}, \mathrm{s})$ and $7.27-7.48(5 \mathrm{H}, \mathrm{m})$; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1686,1244$ and 1157.

3-C hloro-2-methyl-4-phenyl-5,6,7,8-tetradeuterio-1-naphthol 6 [eqn. (3)]. AlCl_{3} ($248 \mathrm{mg}, 1.86 \mathrm{mmol}$) was slowly added portion-by-portion to a stirred solution of (1R*,3S*)-2,2-dichloro-1-methyl-3-phenylcyclopropyl(pentadeuteriophenyl)methanone ($262 \mathrm{mg}, 0.85 \mathrm{mmol}$) in 1,2-dichloroethane ($4 \mathrm{~cm}^{3}$) at $0-5^{\circ} \mathrm{C}$, and the mixture was stirred at room temp. for 10 h . Work-up similar to that of M ethod A gave the product 6 (65 $\mathrm{mg}, 28 \%$) together with 3 -chloro-4-methyl-5-(pentadeuterio-phenyl)-2-phenylfuran ($93 \mathrm{mg}, 40 \%$). ${ }^{\text {11c }}$ Compound 6 : colourless crystals, mp $110-112{ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 2.51(3 \mathrm{H}, \mathrm{s}), 5.32(1 \mathrm{H}$, $\mathrm{br} \mathrm{s}, \mathrm{OH}), 7.20-7.35(2 \mathrm{H}, \mathrm{m})$ and $7.40-7.55(3 \mathrm{H}, \mathrm{m})$; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3532,3492,1558$ and 1462. 3-Chloro-4-methyl-5-(pentadeuteriophenyl)-2-phenylfuran: colourless crystals, mp $70-76{ }^{\circ} \mathrm{C} ; \delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 2.29(3 \mathrm{H}, \mathrm{s}), 7.28-7.35(1 \mathrm{H}, \mathrm{m}), 7.42-$ $7.48(2 \mathrm{H}, \mathrm{m})$ and $8.01(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3) ; v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 2926$, 2276 and 1564.

Controlled reaction using acyl chloride (E)-1a in the absence of benzene [eqn. (4)]. AlCl_{3} ($293 \mathrm{mg}, 2.2 \mathrm{mmol}$) was added portion-by-portion to a stirred solution of the carbonyl chloride (E)-1a ($263 \mathrm{mg}, 1.00 \mathrm{mmol}$) in 1,2-dichloroethane ($5 \mathrm{~cm}^{3}$) at $0-5^{\circ} \mathrm{C}$, and the mixture was stirred at room temp. for 10 h . Following the work-up procedure of M ethod A , a crude oil was obtained which was purified by silica gel column chromatography (hexane-diethyl ether, 5:1) to afford 8,8-dichloro-2-methylcyclopropa[b]indan-1-one 7 ($48 \mathrm{mg}, 21 \%$) and 3,4-dichloro-2-methyl-1-naphthol 8 ($50 \mathrm{mg}, 22 \%$). Compound 7: colourless crystals, mp $65-67^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 1.72$ (3 $\mathrm{H}, \mathrm{s}), 3.20(1 \mathrm{H}, \mathrm{s}), 7.40-7.45(1 \mathrm{H}, \mathrm{m}), 7.54-7.62(2 \mathrm{H}, \mathrm{m})$ and 7.70 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.7$); $\delta_{\mathrm{c}} 11.8,42.1,44.4,75.9,124.5,126.4,128.8$, 134.5, 136.0, 148.6 and 198.1; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1725,1620$ and 1303; m/z (EI) $226\left(\mathrm{M}^{+}\right), 193$ and $191\left(\mathrm{M}^{+}-\mathrm{CI}\right)$. Compound 8: colourless crystals; mp $118-120^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 2.50(3 \mathrm{H}, \mathrm{s})$, $5.27(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 7.50-7.62(2 \mathrm{H}, \mathrm{m}), 8.10(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5)$ and 8.21 (1 H, d, J 8.5); $\delta_{c} 13.9,116.6,121.5,122.0,123.7,124.7$, $126.2,127.5,130.2,131.7$ and $148.1 ; v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3374,1586$ and 1263; m/z (EI) $226\left(\mathrm{M}^{+}\right), 193$ and $191\left(\mathrm{M}^{+}-\mathrm{CI}\right)$.

C ontrolled reaction using the acyl chloride (Z)-1a in the pres-
ence or absence of benzene [eqn. (5)]. Following the procedure of the controlled reaction using (E)-1a described above, reaction using the acyl chloride (Z)-1a gave the tricyclic product 7 (64% with benzene; 70% without benzene), wherein neither of the naphthols 2 a and 8 was detected.

C ontrolled reaction using the tricyclic ketone 7 in the presence or absence of benzene [eqn. (6)]. Following the procedure of the controlled reaction described above, a reaction using the tricyclic product 7 was carried out. It resulted in quantitative recovery of starting material both with and without benzene.
3-C hloro-2-methyl-4-(p-tolyl)-1-naphthol 2c (M ethod A). The crude product which was roughly purified with silica gel column chromatography contained ca. 10% of the o-tolyl or m-tolyl regioisomer. This mixture was further purified chromatographically to give the pure product $\mathbf{2 c}$ as colourless crystals, mp $138-143{ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}(90 \mathrm{M} \mathrm{Hz}) 2.31(3 \mathrm{H}, \mathrm{s}), 2.49(3 \mathrm{H}, \mathrm{s}), 5.20(1 \mathrm{H}$, $\mathrm{br} \mathrm{s}, \mathrm{OH}), 7.00-7.70(7 \mathrm{H}, \mathrm{m})$ and $8.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.4)$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3573$, 1597, 1196 and 704; m/z (EI) 282.0808 $\left(\mathrm{M}^{+} . \mathrm{C}_{18} \mathrm{H}_{15} \mathrm{ClO}\right.$ requires 282.0813).
3-C hloro-4-(4-chlorophenyl)-2-methyl-1-naphthol 2d
(M ethod A). The product 2d containing ca. 35\% of the 2-chlorophenyl regioisomer was obtained as an amorphous solid; $\delta_{\mathrm{H}}(90 \mathrm{M} \mathrm{Hz}) 2.53$ ($3 \mathrm{H} \times 4 / 11$, s, 2-Cl-compound), 2.55 ($3 \mathrm{H} \times 7 / 11, \mathrm{~s}$), $5.52(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 7.02-7.90(7 \mathrm{H}, \mathrm{m})$ and 8.17 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.4$); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3564,1574$ and $760 ; \mathrm{m} / \mathrm{z}$ (EI) $302.0224\left(\mathrm{M}^{+} . \mathrm{C}_{17} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}\right.$ requires 302.0266$)$.
3-C hloro-4-(4-bromophenyl)-2-methyl-1-naphthol 2e (M ethod A). The product $\mathbf{2 e}$ containing ca. 20% of the 2 -bromophenyl regioisomer was obtained as an amorphous solid; $\delta_{\mathrm{H}}(90 \mathrm{M} \mathrm{Hz})$ 2.52 ($3 \mathrm{H} \times 1 / 5$, s, 2-Br-compound), 2.54 ($3 \mathrm{H} \times 4 / 5, \mathrm{~s}$), 5.45 ($1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}$), 7.05-7.90 $(7 \mathrm{H}, \mathrm{m})$ and 8.08-8.30 $(1 \mathrm{H}, \mathrm{m})$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3565$ and 1573; m/z (EI) $345.9759\left(\mathrm{M}^{+}\right.$. $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{BrClO}$ requires 345.9761).
3-C hloro-4-(2,4-dichloro-3-methylphenyl)-2-methyl-1-naphthol $2 f$ (M ethod A). Light brown crystals, mp $171-173^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 61.1 ; \mathrm{H}, 3.8 . \mathrm{C}_{18} \mathrm{H}_{13} \mathrm{Cl}_{3} \mathrm{O}$ requires $\mathrm{C}, 61.48 ; \mathrm{H}$, 3.73%); $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 2.53(3 \mathrm{H}, \mathrm{s}), 2.58(3 \mathrm{H}, \mathrm{s}), 5.32(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, OH), 7.04 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3$), $7.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5), 7.36(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}$ 8.5, 7.7), 7.42 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3$), $7.48(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.3,7.7$) and 8.35 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3$); $\delta_{\mathrm{c}} 149.3,136.3,136.1,135.1,134.8,132.7,131.5$, $129.8,128.1,127.6,126.8,125.5,125.4,122.8,121.3,115.5,18.1$ and $13.4 ; v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3572,3500,1576,1504$ and 1368.
3-C hloro-4-(2,5-dichlorophenyl)-2-methyl-1-naphthol 2g (M ethod A). Colourless crystals, mp $151-152^{\circ} \mathrm{C}$ (Found: C , $60.1 ; \mathrm{H}, 3.5 . \mathrm{C}_{17} \mathrm{H}_{11} \mathrm{Cl}_{3} \mathrm{O}$ requires $\mathrm{C}, 60.48 ; \mathrm{H}, 3.28 \%$); $\delta_{\mathrm{H}}(400$ $\mathrm{M} \mathrm{Hz}) 2.53(3 \mathrm{H}, \mathrm{s}), 5.45-5.50(1 \mathrm{H}, \mathrm{br}, \mathrm{OH}), 7.18(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.4)$, $7.28(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 2.1), 7.36-7.44(2 \mathrm{H}, \mathrm{m}), 7.46-7.52(2 \mathrm{H}, \mathrm{m})$ and $8.16(1 \mathrm{H}, \mathrm{J} 8.5) ; v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3568,1578,1092$ and 762.
3-C hloro-4-(4-chlorophenyl)-1-naphthol 2 h (M ethod A). The product $\mathbf{2 h}$ containing ca. 30% of the 2 -chlorophenyl regioisomer was obtained as an amorphous solid; $\delta_{\mathrm{H}}(90 \mathrm{M} \mathrm{Hz}) 5.69$ ($1 \mathrm{H}, \mathrm{br}$ s, OH), 6.95 ($1 \mathrm{H} \times 1 / 3$, s, 2-Cl-compound), 6.98 (1 $\mathrm{H} \times 2 / 3, \mathrm{~s}), 7.05-7.70(7 \mathrm{H}, \mathrm{m})$ and 8.10-8.40 ($1 \mathrm{H}, \mathrm{m}$); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3540,3069,2978,1588,1343$ and $766 ; \mathrm{m} / \mathrm{z}(\mathrm{EI})$ $288.0118\left(\mathrm{M}^{+} . \mathrm{C}_{16} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}\right.$ requires 288.0110).

3-Bromo-2-methyl-4-phenyl-1-naphthol $2 i \quad$ (M ethod A). A morphous solid (Found: $\mathrm{C}, 64.8$; $\mathrm{H}, 3.8 . \mathrm{C}_{17} \mathrm{H}_{13} \mathrm{BrO}$ requires C, 65.20; H , 4.18\%); $\delta_{\mathrm{H}}(90 \mathrm{M} \mathrm{Hz}) 2.56(3 \mathrm{H}, \mathrm{s}), 5.32(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{OH}), 7.20-7.60(8 \mathrm{H}, \mathrm{m})$ and $8.14(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.4)$; $v_{\text {max }}(\mathrm{K} \mathrm{Br}) /$ $\mathrm{cm}^{-1} 3567$ and 1573.
3-Bromo-4-(4-chloropheny)-2-methyl-1-naphthol 2j (M ethod A). The product 2 j containing ca. 40% of the 2 -chlorophenyl regioisomer was obtained as an amorphous solid; $\delta_{\mathrm{H}}(90 \mathrm{M} \mathrm{Hz})$ 2.58 ($3 \mathrm{H} \times 2 / 5, \mathrm{~s}, 2-\mathrm{Cl}$-compound), $2.60(3 \mathrm{H} \times 3 / 5, \mathrm{~s}$), 5.40 (1 $\mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 7.10-7.90(7 \mathrm{H}, \mathrm{m})$ and 8.04-8.28 ($1 \mathrm{H}, \mathrm{m}$); $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3568$ and 1574 ; m / z (EI) $345.9759\left(\mathrm{M}^{+}\right.$. $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{BrClO}$ requires 345.9761).

3-Bromo-4-(2,5-dichlorophenyl)-2-methyl-1-naphthol 2k (M ethod A). Yellow crystals, mp 148-151 ${ }^{\circ} \mathrm{C}$ (Found: C, 53.1; $\mathrm{H}, 2.6 . \mathrm{C}_{17} \mathrm{H}_{11} \mathrm{BrCl}_{2} \mathrm{O}$ requires $\left.\mathrm{C}, 53.44 ; \mathrm{H}, 2.90 \%\right) ; \delta_{\mathrm{H}}(90 \mathrm{M} \mathrm{Hz})$
$2.59(3 \mathrm{H}, \mathrm{s}), 5.39(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 7.17(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5), 7.25(1 \mathrm{H}$, s), 7.34-7.45 ($2 \mathrm{H}, \mathrm{m}$), 7.46-7.58 ($2 \mathrm{H}, \mathrm{m}$) and $8.16(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 8.5); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3565,1572$ and 762.

3,7-D ichloro-2-methyl-4-phenyl-1-naphthol 21 (M ethod A). Orange crystals, $\mathrm{mp} 113-116^{\circ} \mathrm{C}$ (Found: C, 67.0; H, 3.8. $\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}$ requires $\left.\mathrm{C}, 67.35 ; \mathrm{H}, 3.99 \%\right)$; $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 2.52(3$ $\mathrm{H}, \mathrm{s}), 5.40(1 \mathrm{H}, \mathrm{br}$ s, OH), 7.20-7.40(4 H, m), 7.45-7.55 (3 H, $\mathrm{m})$ and $8.17(1 \mathrm{H}, \mathrm{s}) ; v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3492,1660,1586$ and 1496.
3,7-D ichloro-4-(2,4-dichloro-3-methylphenyl)-2-methyl-1-
naphthol 2 m (M ethod A). Light yellow crystals, mp $178-179^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 55.8 ; \mathrm{H}, 3.3 . \mathrm{C}_{18} \mathrm{H}_{12} \mathrm{Cl}_{4} \mathrm{O}$ requires $\mathrm{C}, 55.99 ; \mathrm{H}$, $3.13 \%)$; $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 2.53(3 \mathrm{H}, \mathrm{s}), 2.60(3 \mathrm{H}, \mathrm{s}), 5.20-5.40(1 \mathrm{H}$, br s, OH), $7.02(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3), 7.10(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.0), 7.29(1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 9.0), $7.43(1 \mathrm{H}, \mathrm{J} 8.3)$ and $8.18(1 \mathrm{H}, \mathrm{s}) ; v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3564$, 1580, 1496 and 1344.

3-C hloro-7-methoxy-2-methyl-4-phenyl-1-naphthol $2 n$ (M ethod A). A morphous solid; $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 2.54(3 \mathrm{H}, \mathrm{s}), 3.96$ ($3 \mathrm{H}, \mathrm{s}$), 5.38 ($1 \mathrm{H}, \mathrm{br}$ s, OH), 7.02-7.05 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.2$), $7.23-$ $7.40(3 \mathrm{H}, \mathrm{m})$ and $7.45-7.55(4 \mathrm{H}, \mathrm{m}) ; v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3447$, 2361 and 1034; m/z (EI) $268.0754\left(\mathrm{M}^{+} . \mathrm{C}_{18} \mathrm{H}_{15} \mathrm{ClO}_{2}\right.$ requires 298.0762).

3-C hloro-4-(2,4-dichloro-3-methylphenyl)-7-methoxy-2-methyl-1-naphthol 20 (M ethod A). Brown crystals, mp 170$173{ }^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 2.52(3 \mathrm{H}, \mathrm{s}), 2.58(3 \mathrm{H}, \mathrm{s}), 5.60-5.75(1 \mathrm{H}$, br, OH), 7.00-7.10 ($3 \mathrm{H}, \mathrm{m}$), $7.40(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.1)$ and $7.38(1 \mathrm{H}$, d, J 2.4); $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3552,2932,1624,1508$ and $1228 ; \mathrm{m} / \mathrm{z}$ (EI) $379.0072\left(\mathrm{M}^{+}-\mathrm{H} . \mathrm{C}_{19} \mathrm{H}_{14} \mathrm{Cl}_{3} \mathrm{O}\right.$ requires 379.0061$)$.

2-M ethyl-4-phenyl-1-naphthol 4c

M ethod B: typical procedure. $\mathrm{AICl}_{3}(440 \mathrm{mg}, 3.3 \mathrm{mmol})$ was added portion-by-portion to a stirred solution of 2,2-dichloro-1-methylcyclopropanecarbonyl chloride ${ }^{\text {11d }}$ 3c ($200 \mathrm{mg}, 1.1$ mmol) in benzene ($5 \mathrm{~cm}^{3}$) at room temp., and the mixture was stirred for 10 h . Work-up was similar to that described in M ethod A gave a crude oil, purification of which by silica gel column chromatography (hexane-diethyl ether, 8:1) gave the product 4c ($145 \mathrm{mg}, 58 \%$) and 2-methyl-3-phenyl-1-naphthol ($60 \mathrm{mg}, 24 \%$). Compound $\mathbf{4 c}$: colourless crystals, $\mathrm{mp} 73-75^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 2.17(3 \mathrm{H}, \mathrm{s}), 5.46(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 6.77(1 \mathrm{H}, \mathrm{s})$, 7.24-7.54 ($8 \mathrm{H}, \mathrm{m}$) and $8.15\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11.6\right.$); δ_{c} 20.8, 111.1, 121.3, 122.7, 124.1, 126.1, 126.3, 126.8, 128.3, 130.7, 131.2, 133.4, 134.1, 139.7 and $150.4 ; v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3389$ and 1595; $\mathrm{m} / \mathrm{z}(E I) 234.1065\left(\mathrm{M}^{+} . \mathrm{C}_{17} \mathrm{H}_{14} 0\right.$ requires 234.1045), 219, 202 and 189. 2-M ethyl-3-phenyl-1-naphthol: yellow oil; $\delta_{\mathrm{H}}(400$ $\mathrm{MHz} 2.28(3 \mathrm{H}, \mathrm{s}), 5.33(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 7.30-7.55(8 \mathrm{H}, \mathrm{m})$, 7.76 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.6$) and $8.13(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.6)$; m/z (EI) $234(\mathrm{M}+$. $\mathrm{C}_{17} \mathrm{H}_{14} \mathrm{O}$ requires 234), 219, 202 and 189. ${ }^{1} \mathrm{H} \mathrm{N}$ M R data for the methyl ether of 2-methyl-3-phenyl-1-naphthol were identical with reported values. ${ }^{2}$
4-P henyl-1-naphthol 4a (M ethod B). Colourless crystals, mp $133-135^{\circ} \mathrm{C}$ (lit., ${ }^{16} 137^{\circ} \mathrm{C}$); $\delta_{\mathrm{H}}(90 \mathrm{M} \mathrm{Hz}) 5.46(1 \mathrm{H}, \mathrm{br}$ s, OH), 7.00-8.00 ($10 \mathrm{H}, \mathrm{m}$) and 8.02-8.30 ($1 \mathrm{H}, \mathrm{m}$).

2,3-D imethyl-4-phenyl-1-naphthol 4b (M ethod B). A morphous solid; $\delta_{\mathrm{H}}(90 \mathrm{M} \mathrm{Hz}) 2.16(3 \mathrm{H}, \mathrm{s}), 2.39(3 \mathrm{H}, \mathrm{s}), 5.40(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, $\mathrm{OH})$, 7.00-7.80 ($7 \mathrm{H}, \mathrm{m}$) and 8.02-8.20 ($1 \mathrm{H}, \mathrm{m}$); $v_{\text {max }}$ (neat)/ $\mathrm{cm}^{-1} 3442$ and 1699; m/z (EI) $248.1185\left(\mathrm{M}^{+} . \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}\right.$ requires 248.1202).

2,2-D ichloro-1-methylcyclopropyl(phenyl)methanone 14c. A solution of 2,2-dichloro-1-methylcyclopropanecarbonyl chloride 3c ($500 \mathrm{mg}, 2.7 \mathrm{mmol}$) in THF ($2 \mathrm{~cm}^{3}$) was added to a Grignard reagent [generated from $\mathrm{Mg}(71 \mathrm{mg}, 3.0 \mathrm{mmol})$ and bromobenzene ($466 \mathrm{mg}, 3.0 \mathrm{mmol}$) in THF ($4 \mathrm{~cm}^{3}$)] at $0-5^{\circ} \mathrm{C}$, and the mixture was stirred at $0-5^{\circ} \mathrm{C}$ for 30 min . The mixture was allowed to warm to room temp. during a period of 30 min , after which it was stirred for an additional 1 h at this temperature. The mixture was poured into an ice and aqueous sat. $\mathrm{NH}_{4} \mathrm{Cl}$ mixture, which was then extracted twice with diethyl ether. The combined extracts were washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give a crude oil. This was purified by silica-gel column chromatography (hexane-diethyl
ether, $50: 1$) to give the product $\mathbf{1 4 c}(401 \mathrm{mg}, 65 \%)$ as a colourless oil (Found: $\mathrm{C}, 57.4 ; \mathrm{H}, 4.2 . \mathrm{C}_{11} \mathrm{H}_{10} \mathrm{Cl}_{2} \mathrm{O}$ requires $\mathrm{C}, 57.67$; H, 4.40\%); $\delta_{\mathrm{H}}(90 \mathrm{M} \mathrm{Hz}) 1.49(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.3), 1.63(3 \mathrm{H}, \mathrm{s}), 2.31$ (1 $\mathrm{H}, \mathrm{d}, \mathrm{J} 6.3), 7.40-7.79(3 \mathrm{H}, \mathrm{m})$ and 7.79-7.88 (2 H, m) $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1688,1453$ and 1262.
2,2-D ichloro-1-methylcyclopropyl(4-chlorophenyl)methanone
14d. Following the procedure for preparing the ketone 14c described above, but using bromochlorobenzene in the place of bromobenzene, the product 14d (64\%) was obtained as a colourless oil (Found: $\mathrm{C}, 49.9$; $\mathrm{H}, 3.3 . \mathrm{C}_{11} \mathrm{H}_{9} \mathrm{Cl}_{3} \mathrm{O}$ requires $\mathrm{C}, 50.13 ; \mathrm{H}$, $3.44 \%) ; \delta_{\mathrm{H}}(90 \mathrm{M} \mathrm{Hz}) 1.50(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.4), 1.64(3 \mathrm{H}, \mathrm{s}), 2.29(1 \mathrm{H}$, d, J 6.4), $7.52(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.1)$ and $7.89(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.1)$; $v_{\text {max }}($ (neat $) /$ $\mathrm{cm}^{-1} 1688,1589$ and 1262.

2,2-D ichloro-1-methylcyclopropyl(p-tolyl)methanone 14e. Following the procedure for preparing the ketone 14c described above, but using p-bromotoluene in the place of bromobenzene, the product $14 \mathrm{e}(52 \%)$ was obtained as a colourless oil (Found: C, 59.0; H , 4.8. $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}$ requires $\mathrm{C}, 59.28 ; \mathrm{H}, 4.97 \%$); $\delta_{\mathrm{H}}(90$ $\mathrm{M} \mathrm{Hz}) 1.46(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.3), 1.63(3 \mathrm{H}, \mathrm{s}), 2.29(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.3), 2.47$ ($3 \mathrm{H}, \mathrm{s}$), $7.32\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.1\right.$) and $7.88(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.1)$; $v_{\text {max }}($ (neat $) /$ $\mathrm{cm}^{-1} 1684,1607$ and 1264.

2,2-D ichloro-1-methylcyclopropyl(m-tolyl)methanone 14f. Following the procedure for preparing the ketone 14c described above, but using m -bromotoluene in the place of bromobenzene, the product $\mathbf{1 4 f}$ (56%) was obtained as a colourless oil (Found: $\mathrm{C}, 59.0 ; \mathrm{H}, 4.7 . \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}$ requires $\mathrm{C}, 59.28 ; \mathrm{H}$ $4.97 \%) ; \delta_{\mathrm{H}}(90 \mathrm{M} \mathrm{Hz}) 1.48(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 6.4), 1.65(3 \mathrm{H}, \mathrm{s}), 2.30(1 \mathrm{H}$ d, J 6.4), $2.46(3 \mathrm{H}, \mathrm{s}), 7.30-7.54(2 \mathrm{H}, \mathrm{m})$ and $7.66-7.90(2 \mathrm{H}$, m); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1686,1314$ and 1269.

2,2-D ichloro-1-methylcyclopropyl(4-methoxyphenyl)-
methanone 14 g . Following the procedure for preparing the ketone 14c described above, but using p-bromoanisole in the place of bromobenzene, the product $\mathbf{1 4 g}(60 \%)$ was obtained as a colourless oil (Found: $\mathrm{C}, 55.3 ; \mathrm{H}, 4.7 . \mathrm{C}_{12} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{2}$: $\mathrm{C}, 55.65$; H, 4.97\%); $\delta_{\mathrm{H}}(90 \mathrm{M} \mathrm{Hz}) 1.45(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 7.1), 1.65(3 \mathrm{H}, \mathrm{s}), 2.24$ (1 H, d, J 7.1), $3.91(3 \mathrm{H}, \mathrm{s}), 7.01(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.1)$ and $7.94(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 9.1); $v_{\max }\left(\right.$ neat $/ \mathrm{cm}^{-1} 2936,1678$ and 1601.

M ethod C : typical procedure

AICl_{3} ($147 \mathrm{mg}, 1.1 \mathrm{mmol}$) was added portion-by-portion to a stirred solution of the ketone $\mathbf{1 4 c}$ ($115 \mathrm{mg}, 0.50 \mathrm{mmol}$) in benzene ($2.5 \mathrm{~cm}^{3}$) at $0-5^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 10 h . Work-up similar to that for M ethod A gave the naphthol 4 c ($66 \mathrm{mg}, 56 \%$).

4-(2,5-D imethylphenyl)-2,5,8-trimethyl-1-naphthol 4d

(M ethod C). A morphous solid; $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 1.84$ ($3 \mathrm{H}, \mathrm{s}$), 1.95 $(3 \mathrm{H}, \mathrm{s}), 1.96(3 \mathrm{H}, \mathrm{s}), 2.34(3 \mathrm{H}, \mathrm{s}), 2.98(3 \mathrm{H}, \mathrm{s}), 5.23(1 \mathrm{H}, \mathrm{br}$ s, $\mathrm{OH}), 6.68(1 \mathrm{H}, \mathrm{s}), 6.92(1 \mathrm{H}, \mathrm{s})$ and $7.00-7.20(4 \mathrm{H}, \mathrm{m})$; $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 3526,2967,2932$ and 1439; m/z (EI) 290.1679 $\left(\mathrm{M}^{+} . \mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}\right.$ requires 290.1672).

2-M ethyl-4-(2,4-dichloro-3-methylphenyl)-1-naphthol 4 e (M ethod C). Light yellow crystals, $\mathrm{mp} 126-127^{\circ} \mathrm{C}$; $\delta_{\mathrm{H}}(400$ $\mathrm{M} \mathrm{Hz}) 2.14(3 \mathrm{H}, \mathrm{s}), 2.60(3 \mathrm{H}, \mathrm{s}), 5.57(1 \mathrm{H}, \mathrm{br}$ s, OH), $6.79(1 \mathrm{H}$ s), 7.04 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.1$), $7.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.0), 7.34-7.44(2 \mathrm{H}, \mathrm{m})$, 7.41 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.1$) and 8.21 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3$); $\delta_{\mathrm{c}} 18.1,20.3,110.9$, 121.6, 122.8, 124.3, 125.1, 126.7, 127.5, 128.2, 130.0, 133.3, 133.9, 134.2, 134.9, 136.2, 137.4 and $151.1 ; v_{\max }($ neat $) / \mathrm{cm}^{-1}$ 3422, 2361 and 1655; m/z (EI) $316.0430\left(\mathrm{M}^{+} . \mathrm{C}_{18} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}\right.$ requires 316.0423).

6-C hloro-2-methyl-4-phenyl-1-naphthol 4 f (M ethod C). A morphous solid; $\delta_{\mathrm{H}}(400 \mathrm{MHz}) 2.17(3 \mathrm{H}, \mathrm{s}), 5.57(1 \mathrm{H}, \mathrm{br} \mathrm{s}$, OH), $6.76(1 \mathrm{H}, \mathrm{s}), 7.10-7.50(7 \mathrm{H}, \mathrm{m})$ and $8.20(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.4)$; $\delta_{\mathrm{c}} 20.8,111.3,121.4,122.8,124.2,125.7,126.5,128.6,129.8$, 132.1, 132.8, 133.5, 133.9, 138.2 and $150.7 ; v_{\max }(\mathrm{N} \mathrm{ujol}) / \mathrm{cm}^{-1}$ 3540, 1580 and 1462; m/z (EI) $268.0666\left(\mathrm{M}^{+} . \mathrm{C}_{17} \mathrm{H}_{13} \mathrm{ClO}\right.$ requires 268.0656).

6-C hloro-4-(2,4-dichloro-3-methylphenyl)-2-methyl-1-
naphthol 4 g (M ethod C). A morphous solid; $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 2.12$ ($3 \mathrm{H}, \mathrm{s}$), $2.58(3 \mathrm{H}, \mathrm{s}), 5.30-5.80(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OH}), 6.79(1 \mathrm{H}, \mathrm{s})$, 7.00 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.1$), $7.10(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.0), 7.28$ ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 9.0, \mathrm{~J}$
2.2), $7.41(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.1)$ and $8.39(1 \mathrm{H}, \mathrm{J} 2.2) ; v_{\max }(\mathrm{N} \mathrm{ujol}) / \mathrm{cm}^{-1}$ 3280, 1600 and 1390; m/z (EI) $350.0026\left(\mathrm{M}^{+} . \mathrm{C}_{18} \mathrm{H}_{13} \mathrm{Cl}_{3} \mathrm{O}\right.$ requires 350.0034).
2,6-D imethyl-4-phenyl-1-naphthol 4h (M ethod C). A morphous solid; $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 2.16(3 \mathrm{H}, \mathrm{s}), 2.50(3 \mathrm{H}, \mathrm{s}), 5.28(1 \mathrm{H}$, br s, OH), $6.75(1 \mathrm{H}, \mathrm{s}), 7.18(1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 8.5,1.5), 7.21-7.31(3 \mathrm{H}$, $\mathrm{m}), 7.36-7.51(3 \mathrm{H}, \mathrm{m})$ and $7.95(1 \mathrm{H}, \mathrm{s}) ; v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3540$, 1580 and 1462; m / z (EI) $248.1199\left(\mathrm{M}^{+} . \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}\right.$ requires 248.1202).

2,6-D imethyl-4-(2,4-dichloro-3-methylphenyl)-1-naphthol 4i (M ethod C). A morphous solid; $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 2.10(3 \mathrm{H}, \mathrm{s}), 2.52$ ($3 \mathrm{H}, \mathrm{s}$), 2.61 ($3 \mathrm{H}, \mathrm{s}$), 5.39 ($1 \mathrm{H}, \mathrm{br}$ s, OH), 6.75 ($1 \mathrm{H}, \mathrm{s}$), 6.90$7.50(4 \mathrm{H}, \mathrm{m})$ and $7.95(1 \mathrm{H}, \mathrm{s}) ; v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3422,2361$ and 1655; m/z (EI) $331.0662\left(M+\mathrm{H}^{+} . \mathrm{C}_{19} \mathrm{H}_{17} \mathrm{Cl}_{2} \mathrm{O}\right.$ requires 331.0658).

2,7-D imethyl-4-phenyl-1-naphthol 4j (M ethod C). A morphous solid; $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 2.16(3 \mathrm{H}, \mathrm{s}), 2.36(3 \mathrm{H}, \mathrm{s}), 5.27(1 \mathrm{H}$, br $\mathrm{s}, \mathrm{OH}), 6.72(1 \mathrm{H}, \mathrm{s}), 7.11(1 \mathrm{H}, \mathrm{s}), 7.21-7.26(3 \mathrm{H}, \mathrm{m}), 7.37-7.51$ $(3 \mathrm{H}, \mathrm{m})$ and $8.06(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5) ; v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3424,2361$ and 1717; m/z (EI) $248.1193\left(\mathrm{M}^{+} . \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}\right.$ requires 248.1202).

2,7-D imethyl-4-(2,4-dichloro-3-methylphenyl)-1-naphthol 4k (M ethod C). A morphous solid; $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 2.08$ ($3 \mathrm{H}, \mathrm{s}$), 2.36 ($3 \mathrm{H}, \mathrm{s}$), 2.38 ($1 \mathrm{H}, \mathrm{br}$ s, OH), 2.59 ($3 \mathrm{H}, \mathrm{s}$), 6.68 ($1 \mathrm{H}, \mathrm{s}$), 6.91 (1 $\mathrm{H}, \mathrm{s}), 7.00(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3), 7.25(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5), 7.39(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.3)$ and $8.07(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.5) ; v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3432,1577$ and 1455 ; $\mathrm{m} / \mathrm{z}(\mathrm{EI}) 330.0592\left(\mathrm{M}^{+} . \mathrm{C}_{19} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}\right.$ requires 330.0580).

M ethyl 1-(2,5-dichlorophenyl)-4-methoxy-3-methylnaphthalene-

 2-carboxylate 12bBu'Li (1.0 м cyclohexane solution; $0.65 \mathrm{~cm}^{3}, 0.65 \mathrm{mmol}$) was added to a stirred solution of 3 -bromo-4-(2,5-dichlorophenyl)-2-methyl-1-naphthol $\mathbf{2 k}$ ($100 \mathrm{mg}, 0.26 \mathrm{mmol}$) in THF ($1 \mathrm{~cm}^{3}$) at $-60^{\circ} \mathrm{C}$, and the mixture was stirred for 1 h at the same temp. Several blocks of solid CO_{2} (ca. 5 g) were added to the mixture, which was then stirred for 2 h at the same temp. The mixture was allowed to warm to room temp. during a period of 30 min after which it was stirred for an additional 30 min . I ce-aqueous 1 m HCl was added to the mixture, which was then extracted twice with diethyl ether. The combined extracts were washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give the crude 1-(2,5-dichlorophenyl)-4-hydroxy-3-methyInaphthal-ene-2-carboxylic acid (110 mg). $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($180 \mathrm{mg}, 1.3 \mathrm{mmol}$) was added to a stirred solution of the crudenaphthoic acid (110 mg) and $\mathrm{M} \mathrm{el}(185 \mathrm{mg}, 1.3 \mathrm{mmol})$ in DM F ($2 \mathrm{~cm}^{3}$) at room temp. after which the mixture was stirred for 1.5 h . It was then poured into ice-water and extracted twice with diethyl ether. The combined extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, concentrated and purified by silica gel column chromatography (hexane-diethyl ether, 15:1) to give the product 12b (59 mg , 61%) as colourless crystals, $\mathrm{mp} 153-157^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 63.7$; H, 4.0. $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{Cl}_{2} \mathrm{O}_{3}$ requires $\left.\mathrm{C}, 64.02 ; \mathrm{H}, 4.30 \%\right)$; $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz})$ $2.45(3 \mathrm{H}, \mathrm{s}), 3.60(3 \mathrm{H}, \mathrm{s}), 3.96(3 \mathrm{H}, \mathrm{s}), 7.25-7.60(6 \mathrm{H}, \mathrm{m})$ and 8.05-8.27 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 9.0$); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 2363,1730$ and 1583.

M ethyl 4-methox y-3-methyl-1-phenyInaphthalene-2-carb-
oxylate 12a. Following the procedure for preparing the ester $\mathbf{1 2 b}$ described above, with $\mathbf{2 i}$ in the place of $\mathbf{2 k}$, the product 12a was obtained (65%) as colourless crystals, mp $113-116^{\circ} \mathrm{C}$ (Found: C, 78.3; $\mathrm{H}, 5.6 . \mathrm{C}_{20} \mathrm{H}_{18} \mathrm{O}_{3}$ requires $\mathrm{C}, 78.41 ; \mathrm{H}, 5.92 \%$); $\delta_{\mathrm{H}}(90 \mathrm{M} \mathrm{Hz}) 2.45(3 \mathrm{H}, \mathrm{s}), 3.50(3 \mathrm{H}, \mathrm{s}), 3.96(3 \mathrm{H}, \mathrm{s}), 7.20-7.70$ ($8 \mathrm{H}, \mathrm{m}$) and 8.05-8.27 ($1 \mathrm{H}, \mathrm{m}$); $v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 2946,1732$ and 1223. N ote: The yield was improved by optimization after our communication. ${ }^{11 \mathrm{~b}}$

1-(2,5-D ichlorophenyl)-3-(hydroxymethyl)-4-methoxy-2naphthoic acid lactone 13b

A mixture of the methyl ester 12b ($40 \mathrm{mg}, 107 \mu \mathrm{~mol}$), N bromosuccinimide ($21 \mathrm{mg}, 118 \mu \mathrm{~mol}$) and azoisobutyronitrile (1 $\mathrm{mg}, 6 \mu \mathrm{~mol})$ in $\mathrm{CCl}_{4}\left(0.5 \mathrm{~cm}^{3}\right)$ was heated under reflux for 2 h . A fter this the mixture was allowed to cool to room temp., when it was diluted with water (ca. $5 \mathrm{~cm}^{3}$) and extracted twice with
diethyl ether. The combined extracts were washed with brine dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give the crude bromide (60 mg). 4 m A queous $\mathrm{NaOH}\left(2 \mathrm{~cm}^{3}\right)$ was slowly added to a stirred solution of the crude bromide (60 mg) in dioxane ($2 \mathrm{~cm}^{3}$) at $70^{\circ} \mathrm{C}$. A fter the mixture had been stirred at the same temp. for 2 h it was allowed to cool to room temp. and diluted with diethyl ether (ca. $5 \mathrm{~cm}^{3}$) and 4 m aqueous HCl (adjusted to pH 1). The separated organic phase was washed with water and brine, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$) and concentrated to give a crude oil. This was purified by silica gel column chromatography (hexane-ethyl acetate, 4:1) to give the product 13b ($36 \mathrm{mg}, 95 \%$) as colourless crystals, $\mathrm{mp} 235-240{ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 63.15 ; \mathrm{H}, 2.97 . \mathrm{C}_{19} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{O}_{3}$ requires C, $63.53 ; \mathrm{H}, 3.37 \%)$; $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 4.21(3 \mathrm{H}, \mathrm{s}), 5.64(1 \mathrm{H}, \mathrm{d}$, J gem 14.2), 5.69 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ gem 14.2), 7.27 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 3.0$), $7.41-7.45$ (1 H, m), 7.50 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.8$), 7.53-7.57 ($2 \mathrm{H}, \mathrm{m}$), 7.60-7.71 (1 $\mathrm{H}, \mathrm{m})$ and $8.36(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.8) ; v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 2365,1750$ and 1589.

1-P henyl-3-(hydroxymethyl)-4-methoxy-2-naphthoic acid lactone 13a. Following the procedure for preparing the ester 13b described above, with 12a in the place of 12b, the product 13a (98\%) was obtained as colourless crystals, mp $181-184^{\circ} \mathrm{C}$ (Found: C, 78.4; H, 4.6. $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{3}$ requires C, 78.61; $\mathrm{H}, 4.86 \%$); $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 4.19(3 \mathrm{H}, \mathrm{s}), 5.31(2 \mathrm{H}, \mathrm{s}), 7.33-7.40(2 \mathrm{H}, \mathrm{m})$, 7.45-7.54 ($4 \mathrm{H}, \mathrm{m}), 7.60-7.71(1 \mathrm{H}, \mathrm{m}), 7.75(1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.05)$ and 8.35 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.31$); $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 2922,1760$ and 1361. Note: The yield was improved by optimization after our communication. ${ }^{11 \mathrm{~b}}$

2-(4-M ethoxyphenyl)-3-methyl-5-phenylfuran 16a

Furan synthesis: typical procedure. AlCl_{3} ($138 \mathrm{mg}, 1.03$ mmol) was added portion-by-portion to a stirred solution of the ketone $\mathbf{1 4 g}(123 \mathrm{mg}, 0.47 \mathrm{mmol})$ in benzene $\left(2.2 \mathrm{~cm}^{3}\right)$ at room temp. and the mixture was stirred for 20 h . Work-up similar to that described in method A gave the product 16a (55 $\mathrm{mg}, 44 \%$) as colourless crystals, mp 91-92 ${ }^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 81.5$; $\mathrm{H}, 5.9 . \mathrm{C}_{18} \mathrm{H}_{16} \mathrm{O}_{2}$ requires $\mathrm{C}, 81.79 ; \mathrm{H}, 6.10 \%$); $\delta_{\mathrm{H}}(90 \mathrm{M} \mathrm{Hz}) 2.28$ ($3 \mathrm{H}, \mathrm{s}$), $3.86(3 \mathrm{H}, \mathrm{s}), 6.60(1 \mathrm{H}, \mathrm{s}), 6.97(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6)$ and $7.19-$ $7.82(7 \mathrm{H}, \mathrm{m}) ; v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 2365,1607$ and 1507.
2-(4-M ethoxyphenyl)-3-methyl-5-(p-tolyl)furan 16b. Following the procedure for preparing the furan 16a described above, using toluene in the place of benzenethe product 16b (65\%) was obtained as colourless crystals, mp 105-107 ${ }^{\circ} \mathrm{C}$ (Found: C, 80.2; $\mathrm{H}, 6.3 . \mathrm{C}_{19} \mathrm{H}_{18} \mathrm{O}_{2}$ requires $\mathrm{C}, 81.99 ; \mathrm{H}, 6.52 \%$); $\delta_{\mathrm{H}}(90 \mathrm{M} \mathrm{Hz}) 2.28$ ($3 \mathrm{H}, \mathrm{s}$), 2.36 ($3 \mathrm{H}, \mathrm{s}$), 3.82 ($3 \mathrm{H}, \mathrm{s}$), $6.51(1 \mathrm{H}, \mathrm{s}), 6.96$ ($2 \mathrm{H}, \mathrm{d}$, J 9.1), $7.18(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6), 7.60(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6)$ and $7.61(2 \mathrm{H}, \mathrm{d}, \mathrm{J}$ 9.1); $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 2920,1601$ and 1510.

5-(4-C hlorophenyl)-2-(4-methoxyphenyl)-3-methylfuran 16c. Following the procedure for preparing the furan 16a described above, with chlorobenzene in the place of benzene, the product 16c (37\%) was obtained as colourless crystals, $\mathrm{mp} 85-86^{\circ} \mathrm{C}$ (Found: $\mathrm{C}, 72.1 ; \mathrm{H}, 4.9 . \mathrm{C}_{18} \mathrm{H}_{15} \mathrm{ClO}_{2}$ requires $\mathrm{C}, 72.36 ; \mathrm{H}$, $5.06 \%) ; \delta_{\mathrm{H}}(90 \mathrm{M} \mathrm{Hz}) 2.28(3 \mathrm{H}, \mathrm{s}), 3.84(3 \mathrm{H}, \mathrm{s}), 6.57(1 \mathrm{H}, \mathrm{s})$, $6.99(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6), 7.33(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6), 7.62(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6)$ and $7.62(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 8.6) ; v_{\text {max }}(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 2930,1605$ and 1507.

(1R*,3S*)-3-(4-C hlorophenyl)-2,2-dichloro-1-methylcyclopropylmethanol 17d

A mixture of (E)-3-(4-chlorophenyl)-2-methylprop-2-en-1-ol ($5.40 \mathrm{~g}, 40 \mathrm{mmol}$), 3,4-dihydro-2H-pyran ($5.00 \mathrm{~g}, 59 \mathrm{mmol}$) and a little (+)-camphorsulfonic acid in diethyl ether ($40 \mathrm{~cm}^{3}$) was stored at room temp. for 10 h . Saturated aqueous NaHCO_{3} was added to the mixture, which was then extracted with diethyl ether ($100 \mathrm{~cm}^{3} \times 2$). The combined extracts were washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and concentrated to give the crude tetrahydropyranol (THP) ether (8.31 g). 50\% A queous $\mathrm{NaOH}(32.0 \mathrm{~g})$ was added to a vigorously stirred mixture of the THP ether, benzyl(triethyl)ammonium chloride (456 mg , $2.0 \mathrm{mmol})$ and chloroform ($47.8 \mathrm{~g}, 0.40 \mathrm{~mol}$) at $35-40^{\circ} \mathrm{C}$. A fter being stirred for 16 h at the same temp., the mixture was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(100 \mathrm{~cm}^{3} \times 2\right)$. The
combined extracts were washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right.$) and concentrated. $\mathrm{MeOH}\left(50 \mathrm{~cm}^{3}\right.$) and a little toluene-p-sulfonic acid were added to the residue and the mixture was stored overnight. Saturated aqueous NaHCO_{3} was added to the mixture which was then evaporated to give a residue; this was extracted with diethyl ether. The extract was washed with water and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and concentrated. Recrystallization of the residue from hexane-diethyl ether ($5: 1$) gave the product $17 \mathrm{~d}(5.17 \mathrm{~g}, 63 \%$) as colourless crystals, mp 127-128 ${ }^{\circ} \mathrm{C}$ (Found: C, 49.6; H, 4.4. $\mathrm{C}_{11} \mathrm{H}_{11} \mathrm{Cl}_{3} \mathrm{O}$ requires $\mathrm{C}, 49.75 ; \mathrm{H}, 4.17 \%)$; $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 1.28(3 \mathrm{H}, \mathrm{s}), 2.65(1$ H), 3.86 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ gem 11.7), 4.01 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ gem 11.7), 7.18-7.23 (2 $\mathrm{H}, \mathrm{m})$ and $7.30-7.35(2 \mathrm{H}, \mathrm{m})$; $\delta_{\mathrm{c}} 15.0,36.4,39.1,69.0,69.2$, 128.6, 131.2, 131.6 and 133.4; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3225,1491$ and 1042.
(1R*,3S*)-3-(4-M ethox yphenyl)-2,2-dichloro-1-methylcyclo-
propylmethanol 17e. Following the procedure for preparing the alcohol 17d described above, with (E)-3-(4-methoxyphenyl)-2-methylprop-2-en-1-ol, the product 17e (77\%) was obtained as colourless crystals, mp $93-94^{\circ} \mathrm{C}$ (Found: C, 58.6; H, 5.4. $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{Cl}_{2} \mathrm{O}$ requires C, 58.79; $\mathrm{H}, 5.76 \%$); $\delta_{\mathrm{H}}(400 \mathrm{M} \mathrm{Hz}) 1.20$ (3 $\mathrm{H}, \mathrm{s}), 1.50-1.90(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 2.56(1 \mathrm{H}, \mathrm{s}), 3.74(3 \mathrm{H}, \mathrm{s}), 3.78$ (1 $\mathrm{H}, \mathrm{d}, \mathrm{J}$ gem 11.7), 3.96 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}$ gem 11.7), 6.72-6.95 ($2 \mathrm{H}, \mathrm{m}$) and $7.01-7.28(2 \mathrm{H}, \mathrm{m}) ; v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 3362,1514$ and 1246.

A cknowledgements

We thank Dr Yukihiko Hashimoto, Dr M inoru Hayashi and Mr Atsushi Sudoh of Tokyo University for HRMS measurements. This work was partially supported by a G rant-in-A id for Scientific Research from the M inistry of Education, Science and Culture (Japan).

R eferences

1 Ed. S. Patai and Z. Rappoport, The Chemistry of the Cyclopropyl Group, Wiley, London, 1987. For reviews: (a) H. N. C. Wong, M .-Y. H on, C.-W. Tse, Y.-C. Yip, J. Tanko and T. H udlicky, Chem. Rev., 1989, 89, 165; (b) U.-H. Reissig, Top. Curr. Chem., 1988, 144, 73; (c) Z. Goldschmidt and B. Crammer, Chem. Soc. Rev., 1988, 229. For recent representative studies; (d) S. Yamago, S. Ejiri, M. Nakamura and E. N akamura, J. Am. Chem. Soc., 1993, 115, 5344; (e) S. Shimada, Y. H ashimoto and K. Saigo, J. Org. Chem., 1993, 58, 5226; (f) P. K ocovsky, J. Srogl, M . Pour and A. G ogoll, J. Am. Chem. Soc., 1994, 116, 186; (g) K. Hiroi and Y. A rinaga, Tetrahedron Lett., 1994, 35, 153; (h) M. Ihara, T. Taniguchi and K. Fukumoto, Tetrahedron Lett., 1994, 35, 1901; (i) T. Imamoto, T. H atajima and T. Yoshizawa, Tetrahedron Lett., 1994, 35, 7805.

2 M. F. Semmelhack, S. H o, D. Cohen, M. Steigerwald, M. C. Lee, G. Lee, A. M. Gilbert, W. D. Wulff and R. G. Ball, J. Am. Chem. Soc., 1994, 116, 7108.
3 L. S. Liebeskind, F. Liu and A. G. Birchler, J. Org. Chem., 1994, 59, 7737.

4 (a) W. E. Paham and E. E. Schweizer, in Organic Reactions, ed. R . A dams, Wiley, L ondon, 1963, vol. 13, p. 55; (b) C. M . Starks and C. Liotta, Phase Transfer Catalysis, A cademic Press, New York, 1978, p. 224.
5 (a) D. Seyferth, H. Yamazaki and D. L. Alleston, J. Org. Chem., 1963, 28, 703; (b) T. Ando, H. Yamanaka, F. Namigata and W. Funasaka, J. Am. Chem. Soc., 1967, 89, 5719; (c) R. M. Blankenship, K. A. Burdett and J. S. Swenton, J. Am. Chem. Soc., 1974, 39, 2300; (d) L. K . Sydnes and L. SkattebøI, Tetrahedron L ett., 1974, 3703; (e) T. Hirao, T. M asunaga, Y. Ohshiro and T. A gawa, J. Org. Chem., 1981, 46, 3745; (f) A. Osuka, K. Takeuchi and H. Suzuki, Bull. Chem. Soc. J pn., 1984, 57, 303; (g) K. M iura, Y. Ichinose, K. Fugami, K. Oshima and K. U timoto, Bull. Chem. Soc. J pn., 1989, 62, 143; (h) T. Hirao, K. H irano, T. H asegawa, Y. Ohshiro and I. I keda, J. Org. C hem., 1993, 58, 6529; (i) Y. A peloig and M. N akash, J. A m. Chem. Soc., 1994, 116, 10084.
6 T. Hiyama, M. Tsukanaka and H. N ozaki, J. A m. C hem. Soc., 1974, 96, 3713.
7 (a) K. K itatani, T. Hiyama and H. N ozaki, Bull. Chem. Soc., J pn., 1977, 50, 1600; (b) R. L. D anheiser and A. C. Savoca, J. Org. Chem., 1985, 50, 2402; (c) T. H arada, T. K atsuhira, K . H attori and A. Oku, J. Org. Chem., 1993, 58, 2958; (d) T. H arada, T. K atsuhira, K . H attori and A. Oku, Tetrahedron, 1994, 50, 7987.

8 (a) Y. Tanabe, Y. N ishii and K . Wakimura, C hem. L ett., 1994, 1757; (b) Y. Tanabe, K . Wakimura and Y. N ishii, Tetrahedron L ett., 1996, 37, 1837.
9 For recent studies: (a) S. K agabu, C. A ndo and J. A ndo, J. Chem. Soc., Perkin Trans. 1, 1994, 739; (b) M. M itani, Y. K obayashi and K. K oyama, J. Chem. Soc., Perkin Trans. 1, 1995, 653; (c) J. R. A. Dulayymi and M. S. Baird, Tetrahedron Lett., 1995, 36, 3393; (d) A . R. A . D ulayymi, J. R. A . Dulayymi, M . S. Baird and L. R ajaram, Tetrahedron, 1995, 8371.
10 (a) D. Cartwrite, P. Langcake, R. J. Pryce, D. P. Leworthy and J. P. Ride, Nature, 1977, 267, 511; (b) G. H olan, D. F. O'K eefe C. Vergona and R. Walser, N ature, 1978, 272, 734; (c) Y. K urahashi, S. K agabu, N. M atsumoto, T. Y amada, K . Wada and T. K ondo, Jap P 54 349/1988 (C hem. A bstr., 1988, 109, 190038h).
11 (a) S. Seko, Y. Tanabe and G. Suzukamo, Tetrahedron Lett., 1990 31, 6883; (b) Y. N ishii and Y. Tanabe, Tetrahedron Lett., 1995, 36 8803; (c) Y. Tanabe, K. Wakimura, Y. N ishii and Y. M uroya, Synthesis, 1996, 388; (d) Y. Tanabe, S. Seko, Y. N ishii, T. Yoshida, N. U tsumi and G. Suzukamo, J. Chem. Soc., Perkin Trans. 1, 1996 2157; (e) Y. N ishii, H. M atsumura, Y. M uroya, T. Tsuchiya and Y. Tanabe, Biosci. Biotech. Biochem., 1995, 59, 1355; (f) Y. N ishii, K. Wakimura, T. Tsuchiya, S. N akamura and Y. Tanabe, J. Chem. Soc., Perkin Trans. 1, 1996, 1243.
12 (a) O. R. Gottieb, in N ew Natural Products and Plant Drugs with P harmacological, Biological or Therapeutic A ctivity, eds. H. Wanger and P. Wollf, Springer-Verlag, Berlin, 1977, p. 227; (b) R. S. Ward, Chem. Soc. R ev., 1982, 11, 75; (c) R. S. Ward, N at. Prod. Rep., 1995, 12, 183; (d) H. Ohmizu and T. I wasaki, J. Synth. Org. Chem. J pn., 1995, 53, 593.
13 For recent studies: (a) A. Oeveren, J. Jansen and B. L. Feringa, J. Org. Chem., 1994, 59, 5999; (b) A. K amal and M. D aneshtalab,

Tetrahedron Lett., 1994, 35, 8803; (c) S. M aeda, H. M asuda and T. Tokoroyama, Chem. Pharm. Bull., 1995, 43, 84; (d) T. H attori, H. Tanaka, Y. Okaishi and S. M iyano, J. C hem. Soc., Perkin Trans. 1, 1995, 235; (e) Y. Hitotsuyanagi, M. K obayashi, K. Takeya and H. Itokawa, J. Chem. Soc., Perkin Trans. 1, 1995, 1387; (f) D. Planchenault and R. D hal, Tetrahedron, 1995, 51, 1395; (g) I. Ling, B. Podanyi, T. H amori and S. Solyom, J. Chem. Soc., Perkin Trans. 1, 1995, 1423; (h) O. M uraoka, G. Tanabe, M. Higashiura, T. M inematsu and T. Momose, J. Chem. Soc., Perkin Trans. 1, 1995, 1437; (i) T. Iwasaki, K. K ondo, T. Nishitani, T. K uroda, K. Hirakoso, A. Ohtani and K. Takashima, Chem. Pharm. Bull., 1995, 43, 1701; (j) A. Pelter, P. Satchwell, R. S. Ward and K. Blake, J. Chem. Soc., Perkin Trans. 1, 1995, 2201; (k) J. E. Cochran and A. Padwa, J. Org. Chem., 1995, 60, 3938; (I) M. Tanaka, T. Mukaiyama, H. M itsuhashi, M. M aruno and T. Wakamatsu, J. Org. C hem., 1995, 60, 4339; (m) T. Ogiku, S. Y oshida, H. Ohmizu and T. I wasaki, J. Org. C hem., 1995, 60, 4585; (n) E. Brown, R . D hal and N. Papin, Tetrahedron, 1995, 51, 13061.
14 (a) J. W. Emsley, S. R. Salman and R. A. Storey, J. Chem. Soc., Perkin Trans. 1, 1970, 1513; (b) Y. Yukawa, Y. Tsuno and N. Shimizu, Bull. Chem. Soc. J pn., 1971, 44, 3175.

15 W. S. M urphy and S. Wattanasin, J. Chem. Soc., Perkin Trans. 1, 1981, 2920.
16 J. Druey, E. F. Jenny, K. Schenker and R. B. Woodward, Helv. C hem. A cta, 1962, 45, 600.

Paper 6/05030A
Received 18th J uly 1996
A ccepted 24th O ctober 1996

